
Interacting Objects: A dataset of object-object interactions for richer
dynamic scene representations

Asim Unmesh1, Rahul Jain1, Jingyu Shi1, VK Chaitanya1, Hyung-Gun Chi1, Subramanian Chidambaram1,
Alexander Quinn1, Karthik Ramani1,2

Abstract— Dynamic environments in factories, surgical
robotics, and warehouses increasingly involve humans, ma-
chines, robots, and various other objects such as tools, fixtures,
conveyors, and assemblies. In these environments, numerous
interactions occur not just between humans and objects but
also between objects themselves. However, current scene-graph
datasets predominantly focus on human-object interactions
(HOI) and overlook object-object interactions (OOIs) despite
the necessity of OOIs in effectively representing dynamic
environments. This oversight creates a significant gap in the
coverage of interactive elements in dynamic scenes. We address
this gap by proposing, to the best of our knowledge, the first
dataset* annotating for OOI categories in dynamic scenes.
To model OOIs, we establish a classification taxonomy for
spatio-temporal interactions. We use our taxonomy to annotate
OOIs in video clips of dynamic scenes. Then, we introduce a
spatio-temporal OOI classification task which aims to identify
interaction categories between two given objects in a video clip.
Further, we benchmark our dataset for the spatio-temporal
OOI classification task by adopting state-of-the-art approaches
from related areas of Human-Object Interaction Classification,
Visual Relationship Classification, and Scene-Graph Gener-
ation. Additionally, we utilize our dataset to examine the
effectiveness of OOI and HOI-based features in the context
of Action Recognition. Notably, our experimental results show
that OOI-based features outperform HOI-based features for
the task of Action Recognition.

I. INTRODUCTION

Fig. 1: Only using HOI in scene graphs (middle) restricts
their scope. However by including OOI (right) we can make
them rich and representative of dynamic environments (left).

*Our benchmarking code is available at
https://github.com/aunmesh/InteractingObjects.
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Scene graphs have been proposed to capture semantic rep-
resentation of dynamic physical environments, for example,
in factories, surgery rooms, and warehouses, using RGB
videos/images. They have been used for various robotics and
computer vision applications such as imitation learning [1],
task planning [2], [3], human-robot collaboration [4], [5],
human activity understanding [6], [7], [8], and embodied
AI [9]. However, while existing scene graph datasets pre-
dominantly focus on spatio-temporal human-object interac-
tions (HOI) they overlook the crucial compositional element
of spatio-temporal object-object interactions (OOI). This is
striking, as dynamic scenes not only comprise of HOIs,
but also OOIs. Leaving out OOIs creates a significant gap
in the coverage of interactive elements of the scene (see
Fig. 1). Since OOIs are critical compositional elements of
any dynamic scene, it is important to address this gap.

Also, OOIs have tremendous potential to be used for
robotics and computer vision tasks. OOIs often define the
start and end of actions (e.g. the action of ‘prying a nail
from a wooden board’ begins with the OOI of the hammer
coming in contact with the nail and ends with the OOI of the
nail coming out of the wooden board). During collaborative
tasks (such as in Fig. 1), humans actively monitor both HOI
and OOI occurring in the scene. This real-time monitoring
enables humans to make informed decisions and adjust
their actions accordingly. Thus, OOIs can be potentially
used for coordinating actions in real-time, ensuring smooth
human-robot and robot-robot collaborations. OOIs also have
the potential to be utilized for learning tasks from human
demonstrations, as human demonstrations not only involve
HOIs but also encompass OOIs.

Despite the importance of OOIs as a compositional ele-
ment of dynamic scenes, and its numerous potential appli-
cations, existing datasets in the field of scene graphs and
related areas (see Section II) have largely overlooked OOIs,
leaving a major gap in the coverage of interactive elements of
dynamic scenes. Motivated by this gap, and potential of OOIs
for robotics and computer vision tasks, we introduce, to the
best of our knowledge, the first dataset annotating semantic
OOI categories in dynamic scenes. OOIs are defined as the
category labels to spatio-temporal interactions between two
objects present in the scene. When referring to objects, we
denote objects such as tools (e.g., hammers, screwdrivers),
furniture and their components (e.g., chairs, tables, legs), ve-
hicles and their components (e.g., cars, engines, wheels), and
numerous other objects that encompass our surroundings.

To model OOIs, we establish a taxonomy of categories
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of OOIs. It comprises three super-categories: contact rela-
tions (cr), location relations (lr), and motion relations (mr).
We provide a comprehensive description of our taxonomy
in Section III-A. Subsequently, we employ this taxonomy
to annotate interaction categories within micro video-clips
(short duration video-clips) featuring objects. These clips are
generated from the COIN dataset [10], which consists of
instructional videos of various activities and tasks. Detailed
information about the dataset and its construction is given in
Section III-B.

Further, we propose the task of OOI classification, which
aims to predict the interaction categories between two given
objects in a video-clip. We include state-of-the-art (SoTA)
methods adopted from domains of HOI classification, Scene
Graph Generation, and Visual Relationship Classification in
our benchmark. We present the formal definition of OOI
classification task, details of the adopted SoTA methods from
related areas, and our base features in Section IV-A. The
results of benchmarking along with ablation studies can be
found in Section V-A.

We also explore the application of OOIs, by using it for the
task of Action Recognition. Our Action Recognition experi-
ments aim at exploring the potential of OOI based features,
and comparing their effectiveness with the HOI based ones.
Mathematical definitions of OOI and HOI based features
with other experimental details are presented in Section IV-B.
The results of action recognition experiments are presented
in Section V-B. Experimental results of action recognition
show that OOI based features outperform HOI based ones
significantly. Also, the ablation study for Action Recognition
validates the structure of our taxonomy, showing that all
3 relation super-categories are important for performance.
We present limitations and future work in Section VI, and
conclude our paper in Section VII. In summary, while current
scene-graph datasets annotate for spatio-temporal HOIs, they
leave out the compositional element of spatio-temporal OOIs.
We address this gap by:

• Proposing a novel dataset (atop COIN [10] dataset)
focusing on spatio-temporal OOIs in dynamic scenes.

• We propose OOI classification task, and adopt and
benchmark SoTA methods from related areas for this
task.

• We explore the application of OOIs for the task of
Action Recognition. Our results show that OOI based
features significantly outperform HOI based features,
thus providing strong evidence for the criticality of
OOIs in effectively representing dynamic environments.

II. RELATED WORKS

A. Scene Graph Datasets

Chao et al. [11] introduced HICO dataset annotating
relations between various objects and their interactions with
humans in images. Krishna et al. [12] created an extensive
scene graph dataset based on images. Recently, datasets
such as [6], [13], [14] have focused on constructing scene
graphs for dynamic scenes by annotating spatio-temporal

HOIs. However, these datasets do not concentrate on OOIs.
While certain datasets, such as [12], do annotate spatial
relations like ‘behind’, ‘near’, and ‘next to’ between objects,
solely annotating spatial relations falls short in capturing
the temporal aspect of OOIs. To capture interactions, which
inherently involve temporality, it is crucial to annotate spatio-
temporal relations rather than solely focusing on spatial
relations. We annotate motion relations between objects to
capture temporality.

B. Visual Relationship Detection

Visual Relationship Detection is aimed at detecting rela-
tionships between entities in the scene. Thus, OOI classifi-
cation task is closely connected to the Visual Relationship
Detection (VRD) task. However, existing VRD datasets like
ImageNet-VidVRD (Shang et al., 2017) and VidOR (Shang
et al., 2019) do not specifically emphasize OOI and instead
include relation classes (e.g., ‘chase’, ‘feed’, ‘kiss’, ‘throw’
and ‘kick’ in VidOR and ‘run-behind’, ‘move-behind’, and
‘jump-behind’ in ImageNet-VidVRD) that are not relevant to
interactions between objects. Thus current VRD datasets do
not emphasize on OOIs.

C. Human Object Interaction classification

HOI classification and OOI classification are closely re-
lated problems, that are crucial for constructing detailed
scene graphs. In order to benchmark our dataset, we surveyed
recent graph neural network (GNN) based approaches for
HOI classification, and then adapted these methods accord-
ingly. Qi et al. [15] proposed a graph parsing neural network
that predicts a parse graph with edge weights for a fully
connected graph. These edge weights are utilized to modulate
message passing between nodes, ensuring that only relevant
neighboring nodes of the human and object contribute to
HOI classification. We incorporate this approach into our
benchmarking process.

D. Object-Object Interaction Affordance

While our focus is on categorization of OOIs happening
in a dynamic scenes, existing research has explored the
classification of Object-Object Interaction Affordances. Sun
et al. [16] propose classifying OOI Affordances through
human-object-object interactions modelling, leveraging hand
motion and object state change based features. [17] propose
learning affordance of tools and objects based on observation
from RGB-D videos. More recently, Mo et al. [18] classify
object-object interaction affordances by modeling 3D shapes
and performing convolution over mesh models. In contrast
to these works, which focus on learning Object-Object In-
teraction Affordances, we aim at classification of OOIs at a
time instant, thus enabling richer dynamic scene graphs.

III. DATASET

A. Taxonomy of OOR categories

Relationship between any two objects comprises of two
aspects: spatial and temporal. Spatial aspect refers to how
the objects are situated relative to each other. Spatial aspects
includes location relations (how an object is located relative



Fig. 2: Samples of annotated Object-Object Interactions in our dataset with bounding boxes, relation labels and action
category labels. lr (Location Relations), mr (Motion Relations), and cr (Contact Relations). Only one interaction is shown
in each frame for clarity.

Fig. 3: Steps to generate clips (a, b), identify interactive object pairs (c, d), and annotate their interaction categories (e).

to another) and contact relations (are the objects in contact).
Temporal aspects pertain to motion relations (how the objects
are moving relative to each other). We base our taxonomy
(see Table I) to capture the spatial and temporal aspects
of OOIs.While identifying sub-categories inside contact and
location relations is straightforward, doing the same for
motion relations is a more complex task. Using common
sense physics, we classified motion relations as either trans-
lational or rotatory, and identified common categories for
each. Subsequently, we analyzed 500 object pairs in YouTube
videos, to identify any overlooked category. Newly identified
relation categories were added to the taxonomy. Our tax-
onomy provides categories which are fine-grained, enabling

annotation of interaction categories in short duration clips.

TABLE I: Taxonomy of spatio-temporal OOI categories
Contact relation Location Relation Motion Relation

Contact Right/Left Holding Rubbing
No contact Behind/Front Raising Lowering

Above/Below Carrying Rotating
Inside Twisting Adjusting

Sliding Penetrating
Moving Towards Moving Away

Negligible Relative Motion

B. Dataset Construction

Our dataset is built on top of COIN [10], a human activity
understanding dataset consisting of YouTube videos. COIN



includes various types of tasks from twelve activity domains,
such as cooking and furniture assembling. We chose action
categories (Fig. 5) from COIN dataset, and generated clips
from videos corresponding to those categories.

1) Clip Generation: To ensure the validity of the OOI
classification task, we needed to select a clip duration in
which the interaction category between two objects does not
change. For COIN dataset, we determined through inspection
that a duration greater than one-third of a second leads to a
change of interaction categories between the objects. Thus,
we the video clips have duration of one-third of a second to
ensure the validity of the OOI classification task. Generation
of micro video-clips was done by random uniform sampling
within action segments annotated by COIN dataset (see b in
Fig. 3). We generated two clips for action segments less than
two seconds long and five clips for longer ones. To capture
temporal interactions between objects, we removed micro-
clips having static objects, by semi-automatically selecting
clips for manual inspection using a threshold on optical flow
magnitude.

2) Hand and Object Annotation: After selecting the clips,
we annotate the central frame of each clip for the presence of
human hands and objects. The annotation of objects is done
manually. For annotation of human hands, we use pre-trained
model [19] along with manual inspection and correction.

3) Relation Annotation: From the annotated objects in
a clip, we select interactive pairs of objects for interaction
category annotation. Interactive object pairs were identified
using a distance and mIoU based threshold as in [20].
To obtain high quality interaction category annotation, we
selected and trained annotators using a four step process. In
the first step, potential annotators received visual examples
of interaction categories along with rationale. In second step,

Fig. 4: Bar chart of number of annotated samples of each
label in the interaction classification taxonomy.

they were shown a tutorial video of the annotation interface.
In third step, annotators did few sample annotations for fur-
ther familiarisation. Finally, a quiz was conducted to check
their understanding of the interaction categories and the
annotation interface. Selected annotators initially received

Fig. 5: Action Categories in our dataset

real-time feedback and query resolution. All of the steps were
designed to avoid inconsistent understanding of the OOI
categories by the different annotators.Our annotation system
ensured that an object pair was annotated for relations by two
different annotators. In case of conflicting annotations, a third
annotator was used, followed by the majority voting rule to
determine final annotations. We show samples of annotated
interactions in Fig. 2.

4) Statistics: We annotate a total of 9,155 object pairs
across 2,200 scenes, resulting in 29,939 different OOI labels.
We present the distribution of labels through a bar chart in
Fig. 4.

IV. METHOD

We define the OOI classification task and describe the
SoTA methods adopted from related areas for this task.
Further, we introduce HOI and OOI based features and
provide details for the Action Recognition task.

A. Object-Object Interaction Classification

1) Problem Definition: Given a clip M with frames
I1, ...., IK and objects with bounding box annotations
B1, ...,BN for the central frame I⌈K/2⌉, OOI classification task
is to predict the relation labels Rcr, Rlr, and Rmr, for two
given objects i and j. Rcr is addressed as a single-label multi-
class and Rlr and Rmr is addressed as a multi-label multi-class
classification problem. Our pipeline for OOI classification
involves extracting various base features from the clip M
followed by training and inference using SoTA methods.
Base features and adopted methods are detailed below:

2) Base Features: Features are broadly divided as:
Object-Centric and Interaction-Centric features. While for-
mers aims to capture information about the objects only, the
latter captures information about the interaction between two
specific objects.

I3D based Object-Centric Feature:

Oi3d
i = RoIAlign( fres(xi,yi,wi,hi)) (1)

xi,yi,wi,hi are the x and y co-ordinate, width and height of
bounding box of ith object. fres is the feature map of the
central frame generated by I3D backbone.
Vision-Transformer (ViT) based Object-Centric Feature:



Ovit
i = MOA(gres(xi,yi,wi,hi)) (2)

MOA [21] stands for masked object attention used to extract
region based features from ViT. Existing region of interest
operators such as RoIAlign, RoIPool are not suited for
extracting region based features from ViT backbone due to
coarse output by ViT backbone. gres is feature map of central
frame generated by ViT.
Vision-Transformer (ViT) based Interaction-Centric Feature:

Ivit
i j = MOA(gres(xi j,yi j,wi j,hi j)) (3)

xi j,yi j,wi j,hi j are the x co-ordinate, y co-ordinate, width and
height of smallest bounding box containing bounding boxes
of objects i and j.
Bounding-Box based Object-Centric Feature:

Obox
i =

[
xi

w
,

yi

h
wi

w
,

hi

h
,

Ai

A

]
, (4)

Ai is the bounding box (in central frame) area, and w, h, A
are the width, height, and the area of the entire image. This
features informs about the geometry of the object.[22]
Bounding-Box based Interaction-Centric Feature:

Ibox
(i, j) =

{
Ibox
t,(i, j)

}T

t=1
(5)

where

Ibox
t,(i, j) =

[
∆(bi,t ,b j,t),∆(bi,t ,bi j,t),∆(b j,t ,bi j,t),

IoU(bi,t ,b j,t),dis(bi,t ,b j,t)

]
(6)

T represents total number of frames. bi,t represents ith

bounding box at time t. bi j,t represents the union box of
bi,t and b j,t . IoU(bi,t ,b j,t) and dis(bi,t ,b j,t) denote the IoU
and normalized-distance between the ith and jth bounding
boxes in t-th frame. ∆(bi,t ,b j,t) are the box deltas [23].
Word2Vec based Semantic features:

Ow2v
i =

n

∑
i=1

pk · ek (7)

where ∑
n
i=1 pk = 1 and pk is the probability score of the kth

class from the object detector. ek represents the Word2Vec
embedding of the kth object class name. Inspired by [24],
Ow2v

i provides semantic prior of the object category without
explicit ground truth category annotations.
Segmentation Mask based Object-Centric shape features:

While we haven’t provided ground-truth segmentation
mask, we use the Segment-Anything model [25] to extract
segmentation masks using ground truth bounding boxes. The
predicted masks are used to extract object shape features.

Oshape
i =

[
As

i ,C
x
i ,C

y
i ,Ei,Si,Hi,Pi,L

ma jor
i ,Lminor

i

]
, (8)

Where:
• As

i : Normalized area of the object i. Computed as the
ratio of the mask area to the total image area, Amask, i

H×W .

• Cx
i and Cy

i : Normalized x and y coordinates of the
centroid of object i. Computed as Cx,mask, i

H and Cy,mask, i
W

respectively.
• Ei: Eccentricity of object i, describing the shape of the

mask. It is the ratio of the distance between the foci
of the ellipse equivalent to the mask, to its major axis
length.

• Si: Solidity of object i, which is the ratio of the object’s
area to its convex hull’s area, Amask, i

Aconvex hull, i
.

• Hi: Extent of object i, which is the fraction of the pixels
in the object’s bounding box that are also in the region,

Amask, i
Abounding box, i

.
• Pi: Normalized perimeter of object i, computed as the

ratio of the object’s perimeter to the perimeter of the
image, Pmask, i

2(H+W ) .

• Lma jor
i and Lminor

i : Normalized major and minor axis
lengths of the ellipse equivalent to object i. They are
computed as Lmajor, mask, i

max(H,W ) and Lminor, mask, i
max(H,W ) respectively.

Segmentation Mask based Interaction-Centric shape fea-
tures:

Ishape
(i, j) =

{
Oshape

i,t −Oshape
j,t

}T

t=1
(9)

3) Methods Adopted for OOI classification: In the context
of OOI classification, our features are specifically crafted
to capture both object-centric details and interaction-centric
dynamics. However, it’s crucial to integrate broader context
of the objects as well. To do so, we model the scene as
a graph where individual objects act as nodes, and their
interactions form the edges. For effective feature aggrega-
tion within this graph structure, we leverage SoTA Graph
Neural Networks (GNNs) from related fields. The node
features are constructed by concatenating all object-centric
features. Similarly edge features are formed by concatenat-
ing interaction-centric features. Afterwards, these features
undergo aggregation by the GNN. Finally, for the object
pair whose interaction category we need to predict, we
concatenate the aggregated node and edge features and pass
it to three classification heads to predict motion, location, and
contact relations. From the HOI field, we adopt GPNN [15].
Graph-RCNN [26], Iterative Message Passing [27], Quad
Attention Transformer [28] are adopted from Scene Graph
generation field. Hierarchical Graph Attention Network [20]
is adopted from Visual Relationship detection field. We also
adopt the message passing frameworks Node-Edge Neural
Net [29] and Graph Transformer [30] for context aggregation.
All the architectures except HGAT assume a fully connected
graph. HGAT only considers edges between two objects if
they satisfy a IoU and distance based measure [20].

4) Implementation Details: We choose a multi-object
tracker to track objects across the video. We use the I3D
network [31] pre-trained on kinetics dataset [32] to extract
Oi3d

i features. Pretrained ViT [33] is used to extract ViT
based features. We fix learning rate at 1e− 3 and train till
the validation error begins to rise. Adam optimizer is used
for all the networks. We report 5 times repeated 5 fold



cross validation results averaged across different train-val
splits. We implement our models in PyTorch Deep Learning
framework. All experiments were conducted on NVIDIA
RTX A6000 GPU.

B. Action Recognition

Interaction categories occuring during the course of an
action can represent that action. Consider the action: “Fu-
eling a car”. This action involves interaction category of
‘penetrating’ and “moving away”, occurring with fuel pump
nozzle entering and leaving the tank. We define FV , which
captures normalized occurrence counts for interaction cate-
gories observed during the course of the action.

FV =
1
M

M

∑
m=1

(
1

Qm

Qm

∑
j=1

qj

)
(10)

Here, qj is 19-dimensional label vector for the j-th inter-
action (HOI or OOI) within the m-th micro-clip of the video
V . Qm is the number of entity pairs (human-object or object-
object) in the micro-clip m. M is the total number of micro-
clips in the video V . Our Action Recognition experiment
encompasses four distinct settings.

• HOI: FV only considers HOI labels in each micro-clip.
• OOI: FV only considers OOI labels in each micro-clip.
• HOI+OOI: FV considers both HOI and OOI labels in

each micro-clip.
• HOI∥OOI: Concatenates the vectors from HOI and OOI

setting above.
We aim to (1.) compare effectiveness of HOI and OOI

based feature vectors for action recognition (2.) investigate
effect of distinguishing OOI with HOI. While ‘HOI+OOI’
setting eliminates any distinctiveness between HOI and OOI,
HOI∥OOI setting preserves their distinctiveness. In total, our
dataset has 11 action categories. We use Decision Trees to
perform classification and report our results.

We split our dataset into a training dataset of 350 and
validation set of 88 videos. Results presented are the average
of 1000 train-val runs, with randomized train-val splits for
each new run. Results are reported in Table IV.

V. EXPERIMENTS

TABLE II: Benchmarking Results. Cells with the highest
scores for a category are highlighted with light blue. mr
stands for motion relations, lr stands for location relations
and cr stands for contact relations.

Method # Param (in M) mAPall mAPmr mAPlr mAPcr

GPNN [15] 1.56 86.72 71.35 93.08 95.73
GraphRCNN[26] 5.12 81.04 60.66 88.76 93.70
NENN[29] 1.64 83.47 65.05 90.70 94.67
HGAT[20] 3.26 84.23 65.50 91.60 95.58
IMP[27] 1.89 84.32 65.40 91.70 95.87
SQUAT[28] 9.89 80.97 61.98 87.43 93.51
GraphTrans[30] 4.30 85.16 67.32 93.22 94.93

A. OOI Classification

1) Benchmarking: We perform a thorough benchmarking
of our dataset in Table II using SoTA methods described
in previous section. We observe lower performances for mr
classification (max 71.35%), as compared to lr and cr classi-
fication, thus indicating the challenge in classifying motion
relations. Among all the tested approaches, GPNN shows
the best performance overall as well as on motion relations.
IMP achieves best performance for contact relations. Both
of these architectures iteratively refine attention over edges
and nodes for the fully connected graph. From their superior
performance, and also looking at the nature of the OOIC
problem, that it has many noisy and irrelevant edges, we posit
that GNN architectures which iteratively perform attention
are well suited for OOI classification task. We also show the
Average Precision (AP) for each label in Fig. 6. We observe
a significant variation in the AP values for labels in motion
relations. Motion relations exhibit a strong long tailed nature
(as show in Fig. 4) and poor performance of the labels in the
far end of the tail can be caused by lesser number of training
samples. However, we also see trends against the long tail
(such as AP for rubbing is greater than AP for carrying). We
suspect that some of the relation-labels (such as carrying or
adjusting) has large intra-class variance, thus hampering their
performance.

Fig. 6: Average Precision (AP) for each label (with the best
performing model GPNN). Predicting motion relations are

more challenging compared to location and contact
relations due to their temporal nature and long-tailed

distribution of labels.

2) Base Feature Ablation for OOI classification: We
perform feature ablation study (see Table III) to determine
the importance of different features for the OOI classifi-
cation task. Each ablated feature contributes significantly
in final performance. However, some features like I3D-
ResNet50 and ViT-based object-centric features appear to
have a more significant impact on performance than others.
Our observations are: (1.) Contribution of I3D features - I3D
features contribute exceptionally well to the performance
of all the categories. Our observation indicates the critical
nature of deep 3d convolutional features for the task of OOI
classification. (2.) ViT - While ViT contributes significantly,



it’s contribution is lower than expected. We posit that this is
due to ViT’s coarse 16x16 feature map which may cause
a loss of object details, as noted in [21]. While MOA
attempts to address this, the limitations persist because of
the initial coarse map. Using ViT has benefits, but there’s
potential for improvement with a larger resolution feature
map. (3.) Success of Semantic Features - Ow2v

i plays a
pivotal role in all relation categories. This is promising
since this feature attempts to address the open vocabulary
nature of OOIs, catering to interactions with objects from
unknown categories. The success of this feature encour-
ages approaches in zero/few shot learning to be applied
to OOI classification problem. (4.) Contribution of Non-
Deep features - Non-deep features contribute significantly to
the performance and even outperform deep features (Ow2v

i ,
Ovit

i and Ivit
i, j in many instances. The non-deep features are

strikingly low-dimensional as compared to deep features, and
are designed to capture the geometrical aspects of OOIs.
Their success is noteworthy and indicates their crucial nature
for achieving higher performance without much increase in
computational cost. (5.) Contribution of Interaction Centric
Features - Interaction centric features have quadratic mem-
ory complexity with respect to number of objects, while
object centric features have linear memory complexity with
respect to number of objects. However, the crucial role of
interaction-centric features in pushing performance, demands
their inclusion. It’s also noteworthy that for both bounding-
box and shape based features, the interaction centric versions
contribute more than object centric versions for all the
relation categories.

TABLE III: Ablation study results. Drops are shown in blue
parentheses, with the largest drop in each category boldfaced.

Ablated mAPall mAPmr mAPlr mAPcr

None 86.7 71.4 93.1 95.7

Ovit
i 81.7 (-5.0) 63.5 (-7.9) 87.7 (-5.4) 93.5 (-2.2)

Oi3d
i 69.1 (-17.6) 45.5 (-25.9) 80.2 (-12.9) 81.7 (-14.0)

Obox
i 81.3 (-5.4) 62.6 (-8.8) 87.8 (-5.3) 93.5 (-2.2)

Ow2v
i 82.6 (-4.1) 63.6 (-7.8) 90.3 (-2.8) 94.0 (-1.7)

Oshape
i 83.7 (-3.0) 65.7 (-5.7) 91.5 (-1.6) 93.9 (-1.8)

Ivit
i, j 83.4 (-3.3) 64.2 (-7.2) 90.6 (-2.5) 95.5 (-0.2)

Ibox
i, j 80.55 (-6.2) 62.5 (-8.9) 87.3 (-5.8) 91.9 (-3.8)

Ishape
i, j 83.3 (-3.4) 64.2 (-7.2) 91.2 (-1.9) 94.5 (-1.2)

3) Number of frames ablation for OOI classification:
To validate the usage of micro-clip, we perform ablation
study (Fig. 7) where we vary the number of frames used
for feature extraction. Specifically, we vary the frame count
from one (using central frame only) to eleven (using five
frames before and after the central frame) in steps of two (by
adding one frame before and one after the central frame). The
performance was evaluated using the GPNN network, which
achieved the best results in the benchmarking. We observed
that increasing the number of frames, resulted in improved
performance across all three relation super-categories (lr, mr
and cr). The results validates the utilization of micro-clips
for predicting interactions.

Fig. 7: Increasing the video observation ratio from 0% (using
central frame) to 100% (using all 11 frames) positively affect
mAP for lr (location relation), mr (motion relation) and cr
(contact relation) due to the added temporal information.

B. Action Recognition on COIN

TABLE IV: Action Recognition accuracy using OOI and
HOI based features measured across different combinations
of relation categories. OOI consistently outperforms HOI
based features. (Cells with highest score for a column are
highlighted with light blue.)

Features cr lr mr cr+lr cr+mr lr+mr cr+lr+mr

HOI 23.07 14.24 25.30 23.41 26.41 27.24 31.23
OOI 18.77 25.37 34.38 30.61 34.26 36.69 41.20
HOI+OOI 18.85 20.94 30.58 27.16 31.41 37.03 37.98
HOI∥OOI 24.88 25.72 34.07 32.30 36.06 39.33 43.14

OOI features prove to be significantly more performant
and discriminative for Action Recognition, as compared to
HOI features (9.97% increase from HOI to OOI when all
3 relations are used). Additionally, the performance of the
fused feature, HOI∥OOI shows a significant increase of
5.15% compared to the naive fusion of HOI+OOI, sug-
gesting that it is beneficial to consider HOI and OOI as
distinct sources of information. The maximum performance
for cr+lr+mr, indicates that the three relation categories
(cr, lr and mr) are important for Action Recognition. High
performance of OOI features, seen together with the high
performance of motion relations, validates the inclusion of
temporal aspects in our taxonomy.

VI. LIMITATIONS AND FUTURE WORK

Future research on OOIs may explore segmentation setting
(in contrast to the classification setting) using longer clips
so that OOI categories between an object pair changes with
time. Also, OOIs may be applied to enhance understanding
of dynamic environments, and used for tasks such as human-
robot or robot-robot collaboration. OOIs can be applied for
learning object oriented tasks from human demonstrations.



VII. CONCLUSION

In this letter, we introduce, to the best of our knowledge,
the first dataset focusing on OOI categories in dynamic
scenes. We propose OOI classification task and benchmark
our dataset on this task. Further, we compare OOI and HOI-
based features for Action Recognition task, where OOI-
based features outperform HOI-based ones. Outperformance
of HOI by OOI-based features highlights its potential for
robotics and computer vision tasks.
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